Prediction of Plant Height in Arabidopsis thaliana Using DNA Methylation Data

نویسندگان

  • Yaodong Hu
  • Gota Morota
  • Guilherme J. M. Rosa
  • Daniel Gianola
چکیده

Prediction of complex traits using molecular genetic information is an active area in quantitative genetics research. In the postgenomic era, many types of -omic (e.g., transcriptomic, epigenomic, methylomic, and proteomic) data are becoming increasingly available. Therefore, evaluating the utility of this massive amount of information in prediction of complex traits is of interest. DNA methylation, the covalent change of a DNA molecule without affecting its underlying sequence, is one quantifiable form of epigenetic modification. We used methylation information for predicting plant height (PH) in Arabidopsis thaliana nonparametrically, using reproducing kernel Hilbert spaces (RKHS) regression. Also, we used different criteria for selecting smaller sets of probes, to assess how representative probes could be used in prediction instead of using all probes, which may lessen computational burden and lower experimental costs. Methylation information was used for describing epigenetic similarities between individuals through a kernel matrix, and the performance of predicting PH using this similarity matrix was reasonably good. The predictive correlation reached 0.53 and the same value was attained when only preselected probes were used for prediction. We created a kernel that mimics the genomic relationship matrix in genomic best linear unbiased prediction (G-BLUP) and estimated that, in this particular data set, epigenetic variation accounted for 65% of the phenotypic variance. Our results suggest that methylation information can be useful in whole-genome prediction of complex traits and that it may help to enhance understanding of complex traits when epigenetics is under examination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction

SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...

متن کامل

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses

The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...

متن کامل

Heterologous expression and purification of Arabidopsis thaliana VIM1 protein: in vitro evidence for its inability to recognize hydroxymethylcytosine, a rare base in Arabidopsis DNA.

The discovery of 5-hydroxymethyl-cytosine (5hmC) in mammalian cells prompted us to look for this base in the DNA of Arabidopsis thaliana (thale cress), and to ask how well the Arabidopsis Variant in Methylation 1 (VIM1) protein, an essential factor in maintaining 5-cytosine methylation (5mC) homeostasis and epigenetic silencing in this plant, recognizes this novel base. We found that the DNA of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 201  شماره 

صفحات  -

تاریخ انتشار 2015